A modified Frank–Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified Frank-Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms

We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder containing a finite set of points. This problem arises in optimal design in statistics when one is interested in a subset of the parameters. We provide convex formulations of this problem and its dual, and analyze a method based on the Frank-Wolfe algorithm for their solution. Under suitable conditions o...

متن کامل

Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids

We show the linear convergence of a simple first-order algorithm for the minimum-volume enclosing ellipsoid problem and its dual, the D-optimal design problem of statistics. Computational tests confirm the attractive features of this method.

متن کامل

Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points S = {x1, . . . , xm} ⊂ R and > 0, we propose and analyze an algorithm for the problem of computing a (1 + )-approximation to the minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm is polynomial for fixed . In addition, the algorithm returns a small core set X ⊆ S , whose size is independent of the number of points m, with the property that ...

متن کامل

A Simple Streaming Algorithm for Minimum Enclosing Balls

We analyze an extremely simple approximation algorithm for computing the minimum enclosing ball (or the 1-center) of a set of points in high dimensions. We prove that this algorithm computes a 3/2-factor approximation in any dimension using minimum space in just one pass over the data points.

متن کامل

Minimum-area enclosing triangle with a fixed angle

Given a set S of n points in the plane and a fixed angle 0 < ω < π, we show how to find all triangles of minimum area with angle ω that enclose S in O(n log n) time. We also demonstrate that in general, the solution cannot be written without cubic root.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2013

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2011.11.004